EMC Test Report

- Applicant: Suzhou Hypontech Co., Ltd.
- Address: No.1508 Xiangjiang Road, SND, 215010 Suzhou PEOPLE'S REPUBLIC OF CHINA
- Product: Converter (Micro inverter)
- Model: HMS-600W, HMS-600W-C, HMS-800W, HMS-800W-C

COMMERCIAL-IN-CONFIDENCE

Report Number: 64.972.23.30372.01

Add value. Inspire trust.

RESPONSIBLE FOR	NAME	SIGNATURE	DATE
Prepared by	Charlie Wu	Charbre Ny STREAM	2023-04-17
Approved by	Wendy Ye	Nerd . G	2023-04-17

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service control rules.

EXECUTIVE SUMMARY This product was tested and found to be in compliance with	EN IEC 61000-6-1:2019 EN IEC 61000-6-3:2021 EN 62920:2017/A1:2021 EN 301 489-1 V2.2.3:2019 EN 301 489-17 V3.2.4:2020
--	--

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

Г

5/F & East of 8/F., Communication Building, No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, China Phone: +86 20 3815 3200 Fax: +86 20 3832 0478 www.tuvsud.com ID Number: GCN_SR_EMC_TR_001 Revision:2.0 Effective:2019-12-26

Contents

1	Report Summary	3
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Report Modification Record Introduction Brief Summary of Results Test Conditions Product Information and general remarks Deviations from the Standard Test Location.	
2	Test Details	10
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Conducted Disturbance at Mains Terminals Radiated Disturbance (30MHz to 6000MHz) Harmonic current emission Flicker Electrostatic discharge immunity test Enclosure Port - Radio-frequency electromagnetic field Amplitude modulated Electrical fast transient /burst immunity test Surge immunity test Immunity to conducted disturbances, induced by radio-frequency fields Enclosure Port - Power-frequency magnetic field Voltage dips, short interruptions and voltage variations immunity tests	
3	Test Equipment Information	50
3.1	General Test Equipment Used	50
4	Measurement Uncertainty	52
5	Photographs	53

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2023-04-17

1.2 Introduction

The information contained in this report is intended to show verification of the EMC Qualification Approval Testing of the requirements of the standards for the tests listed in Section 1.3.

Applicant	:	Suzhou Hypontech Co., Ltd.
Address	:	No.1508 Xiangjiang Road, SND, 215010 Suzhou PEOPLE'S REPUBLIC OF CHINA
Manufacturer	:	Same as applicant
Address	:	Same as applicant
Model Number(s)	:	HMS-600W, HMS-600W-C, HMS-800W, HMS-800W-C
Product Type	:	Grid-Connected PV Inverter
Trademark	:	N/A
Date of Receipt of EUT	:	2023-03-20
Start of Test	:	2023-03-21
Finish of Test	:	2023-03-21
Name of Engineer(s)	:	Charlie Wu

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with EN IEC 61000-6-1:2019, EN IEC 61000-6-3:2021, EN 62920:2017/A1:2021, EN 301 489-1 V2.2.3:2019, EN 301 489-17 V3.2.4:2020 are shown below.

Specification	Clause	Test Description	Result	Remark
EN IEC 61000-6-3:2021	11	Conducted disturbance at mains	Pass	/
EN 62920:2017/A1:2021	8	terminals	Pass	/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	8.4 of EN 301 489-1	Conducted Disturbance at AC input/output port	Pass	/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	8.3 of EN 301 489-1	Conducted Disturbance at DC input/output port	N/A	Note 2
EN IEC 61000-6-3:2021	11	Conducted disturbance at DC	Pass	/
EN 62920:2017/A1:2021	8	power port	Pass	/
EN IEC 61000-6-3:2021	11			/
EN 62920:2017/A1:2021	8	Radiated disturbance	Deee	/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	8.2 of EN 301 489-1		Pass -	/
EN 61000-3-12:2011	11		N/A	Note 5
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	8.5 of EN 301 489-1	Harmonic current emission	N/A	Note 5
EN IEC 61000-3-11:2019	11		N/A	Note 5
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	8.6 of EN 301 489-1	Flicker	N/A	Note 5
EN IEC 61000-6-1:2019 EN 62920:2017/A1:2021 (refer IEC 61000-4-2:2008)	9	Electrostatic discharge immunity test	Pass	/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	9.3 of EN 301 489-1			/
EN IEC 61000-6-1:2019 EN 62920:2017/A1:2021 (refer IEC 61000-4-4:2012)	9	Electrical fast transient /burst immunity test	Pass	/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	9.4 of EN 301 489-1		Pass	/
EN IEC 61000-6-1:2019 EN 62920:2017/A1:2021 (refer IEC 61000-4- 3:2006+AMD1:2007+AMD2:2010)	9	Radiated, radio-frequency, electromagnetic field immunity	Pass	/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	9.2 of EN 301 489-1	test	Pass	/
EN IEC 61000-6-1:2019 EN 62920:2017/A1:2021 (refer IEC 61000-4-5:2014)	9	Surge immunity test	Pass	/ Note 3

				China
Specification	Clause	Test Description	Result	Remark
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	9.8 of EN 301 489-1		Pass	/
EN IEC 61000-6-1:2019				/
EN 62920:2017/A1:2021 (refer IEC 61000-4-6:2013)	9	Immunity to conducted disturbances, induced by radio-	Pass	/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	9.5 of EN 301 489-1	frequency fields		/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	9.6 of EN 301 489-1	Vehicular transient and surges****	N/A	/
EN IEC 61000-6-1:2019 EN 62920:2017/A1:2021 (refer IEC 61000-4-8:2009)	9	Immunity – Enclosure port – Power-frequency magnetic field	Pass	/
EN IEC 61000-6-1:2019 EN 62920:2017/A1:2021	9	Voltage dips, short interruptions	Pass	/
(refer IEC 61000-4-11:2004)		and voltage variations immunity tests		/
EN 301 489-1 V2.2.3 EN 301 489-17 V3.2.4	9.7 of EN 301 489-1		Pass	/

Remark:

Note 1: The highest internal frequency of the EUT is less than 108 MHz, the measurement was made up to 1GHz. Note 2: No tests are required for dc powered equipment with an overall length power line less than 3m. Note 3: The length of dc cord is shorter than 30m as the manufacturer's declared.

Note 4: Equipment containing no Hall elements or magnetic field sensors is not susceptible to magnetic field. Hence, this equipment is deemed to fulfil the magnetic field test. Note 5: Not application to the equipment which intended to be not connected to public low-voltage distribution systems for

input port.

1.4 Test Conditions

1.4.1 Environmental Conditions

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment.

The climatic conditions during the tests were within the following limits:

Temperature H	lumidity	Atmospheric pressure
15 °C – 35 °C 30	30 % - 60 %	800 hPa – 1060 hPa

If explicitly required in the basic standard or applied product standard the climatic values are recorded and documented separately in this test report.

1.4.2 Performance Criteria

For EN IEC 61000-6-2:2019

Performance criterion A: The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonable expect from the apparatus if used as intended.

Performance criterion B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however no change of actual operating state or stored data is allowed to persist after test. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonable expect from the apparatus if used as intended.

Performance criterion C: Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instruction for use.

	Clause 6 of EN301 489-1				
Criteria	Pe	Performance Criteria			
CT/CR	During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended.				
TT/TR	After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended.				
	Clause 6	of EN301 489-17			
Criteria	During test	After test			
A	Shall operate as intended. May show degradation of performance (see note 1). Shall be no loss of function.	Shall operate as intended. Shall be no degradation of performance (see note 2). Shall be no loss of function.			

		China			
	Shall be no unintentional	Shall be no loss of stored data or user			
	transmissions.	programmable			
		functions.			
		Functions shall be self-recoverable.			
	May show loss of function (one or	Shall operate as intended after recovering.			
	more).	Shall be no degradation of performance (see note			
В	May show degradation of	2).			
	performance (see note 1).	Shall be no loss of stored data or user			
	No unintentional transmissions.	programmable			
		functions.			
		Functions shall be recoverable by the operator.			
	May be loss of function (one or	Shall operate as intended after recovering.			
С	more).	Shall be no degradation of performance (see note			
		2).			
NOTE 1:	Degradation of performance during	the test is understood as a degradation to a level			
not below	v a minimum performance level spec	ified by the manufacturer for the use of the			
apparatu	apparatus as intended. In some cases the specified minimum performance level may be				
replaced	replaced by a permissible degradation of performance. If the minimum performance level or the				
permissit	permissible performance degradation is not specified by the manufacturer then either of these				
	may be derived from the product description and documentation (including leaflets and				
advertisir	ng) and what the user may reasonab	ly expect from the apparatus if used as intended.			
NOTE 2:	No degradation of performance afte	r the test is understood as no degradation below a			
minimum	performance level specified by the	manufacturer for the use of the apparatus as			
		Im performance level may be replaced by a			
	permissible degradation of performance. After the test no change of actual operating data or user				
	retrievable data is allowed. If the minimum performance level or the permissible performance				
	degradation is not specified by the manufacturer then either of these may be derived from the				
-	product description and documentation (including leaflets and advertising) and what the user				
	may reasonably expect from the apparatus if used as intended.				
		tests with phenomena of a continuous nature;			
	-	nomena of a continuous nature, except for voltage			
-	dips of 100 ms and voltage interruptions of 5 000 ms duration or which performance criteria C				
shall app	c .				

1.5 Product Information and general remarks

1.5.1 Technical Description

Ratings	:	Refer to the section 1.5.4
Protection class	:	I

1.5.2 Test Configuration

Configuration	Description
AC Powered	AC 230V, 50Hz
DC Powered	DC 60V

1.5.3 Modes of Operation

Mode	Description
Test mode 1:TM1	PV to Grid with full load + WIFI/BLE connection mode
Test mode 2:TM2	PV to Grid with half load + WIFI/BLE connection mode
Test mode 3:TM3	PV to Grid with null load + WIFI/BLE connection mode

1.5.4 General remark:

All models have the same electronic components except amount of AC output port and output power/current by software control.

Models HMS-800W, HMS-600W have two output ports and models HMS-800W-C, HMS-600W-C only have one output port.

By evaluation, model HMS-800W was selected to perform full test.

The worst case's test data was presented in this test report.

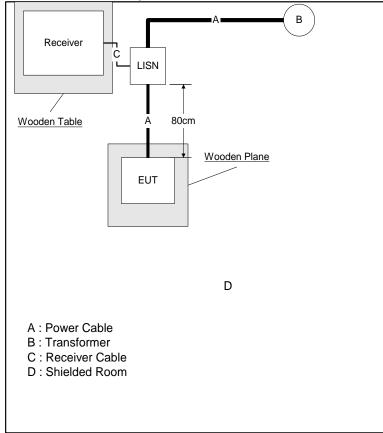
Model list							
	Model name	HMS-800W HMS-800W-C	HMS-600W HMS-600W-C				
	Max. input voltage	d.c. 60V	d.c. 60V				
D\/ Input	MPP voltage range	d.c. 25-55V	d.c. 25-55V				
PV Input	Max. input current	d.c. 15/15A	d.c. 15/15A				
	Isc PV(absolute maximum)	d.c. 20/20A	d.c. 20/20A				
	Rated output voltage	1/N/PE AC 220/230/240V	1/N/PE AC 220/230/240V				
	Rated output frequency	50/60Hz	50/60Hz				
Grid	Max. AC output current	a.c 3.6A	a.c 2.7A				
Output	Rated AC output power	800W	600W				
	Rated/Max. apparent AC power	800VA	600VA				
	Power factor	>0.99	>0.99				
	Overvoltage category	III(AC), II(DC)	III(AC), II(DC)				
	Ingress protection	IP67	IP67				
General	Protective class	I	I				
	Operating temperature range	-40°C to 65°C	-40°C to 65°C				
	Inverter topology	Isolated	Isolated				

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 Test Location

Test Site 1: Jiangsu TEM-Wave Testing Service Ltd. Address: 19-9, Xishi Road, Xinwu Dist., Wuxi, Jiangsu, China


2 Test Details

2.1 Conducted Disturbance at Mains Terminals

2.1.1 Test Method

The EUT was placed on a 0.8 m non-conductive table for table-top equipment and on a 0.12 m insulated support for floor standing equipment above a ground reference plane all within a test laboratory.

All power was connected to the EUT through an Artificial Mains Network (AMN). Conducted disturbance voltage measurements on mains lines were made at the output of the AMN. The AMN was placed 0.8m from the boundary of the EUT and bonded to the reference ground plane.

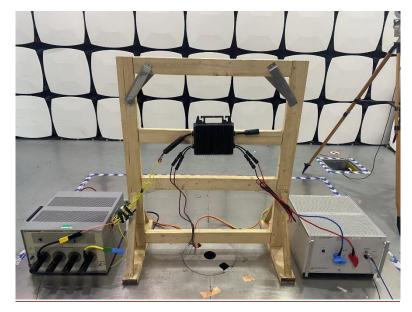
2.1.2 Specification Limits

For EN IEC 61000-6-3&EN 62920

Requirement for conducted emissions								
Frequency range	AC mains	port dB(µV)	DC power	port dB(µV)				
MHz	Quasi-peak	Average	Quasi-peak	Average				
0.15 to 0.5	66 to 56	56 to 46	79	66				
0.5 to 5	56	46	73	60				
5 to 30	60	50	73	60				

For EN 301 489-1, EN 301 489-17

table A.10 – requirements for conducted emissions from the AC mains power ports of Class B equipment						
Limits dB(µV) ^a Method						
Frequency range	Quasi-peak	Average	AMN			
150kHz to 500kHz	66 to 56	56 to 46				
500kHz to 5MHz	56	46				
5MHz to 30MHz	60	50				

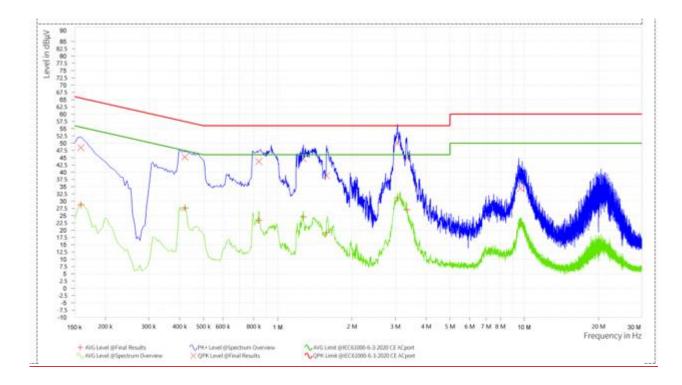

Remark for test data:

*Level=Reading Level + Correction Factor

**Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

2.1.3 Test Setup

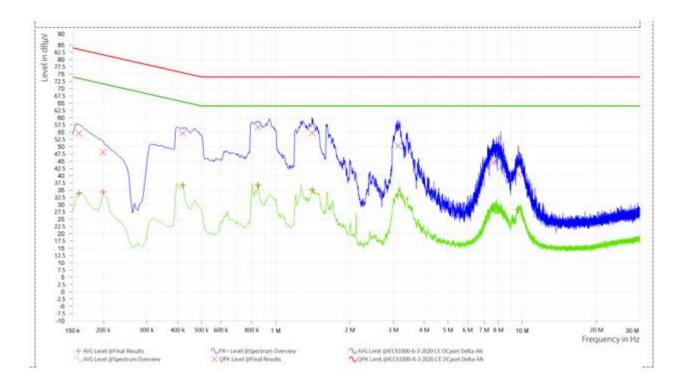

2.1.4 Test Location

This test was carried out in shielded room.

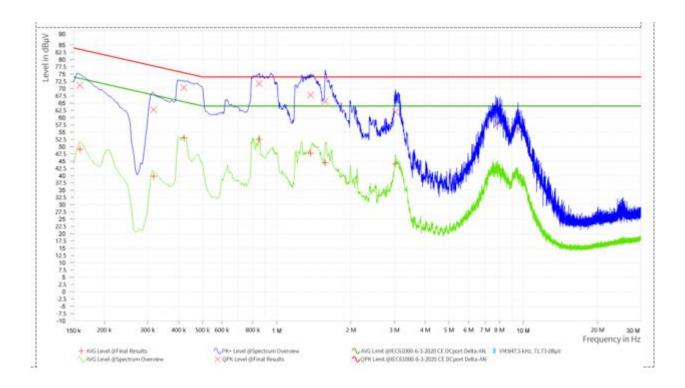
2.1.5 Test Results


Model	: HMS-800W	/
Test Mode	: TM1	
Remark	: L1	
Test Date	: 2023-03-21	

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	AVG Level [dBµV]	AVG Limit [dBµV]	AVG Margin [dB]
1	0.159	48.46	65.52	17.05	28.71	55.52	26.81
1	0.420	45.26	57.45	12.19	27.67	47.45	19.78
1	0.839	43.70	56.00	12.30	23.42	46.00	22.58
1	1.271	44.62	56.00	11.38	24.58	46.00	21.42
1	1.577	38.83	56.00	17.17	19.20	46.00	26.80
1	3.062	50.03	56.00	5.97	31.12	46.00	14.88
1	3.341	44.93	56.00	11.07	27.12	46.00	18.88
1	9.641	34.40	60.00	25.60	22.29	50.00	27.71


Model	: HMS-800W
Test Mode	: TM1
Remark	: N
Test Date	: 2023-03-21

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	AVG Level [dBµV]	AVG Limit [dBµV]	AVG Margin [dB]
1	0.155	48.21	65.75	17.55	26.54	55.75	29.22
1	0.398	44.41	57.91	13.49	21.44	47.91	26.47
1	0.834	42.60	56.00	13.40	21.83	46.00	24.17
1	1.406	42.61	56.00	13.39	22.39	46.00	23.61
1	1.590	31.54	56.00	24.46	16.42	46.00	29.58
1	3.057	46.97	56.00	9.03	29.33	46.00	16.67
1	9.906	33.49	60.00	26.51	19.80	50.00	30.20

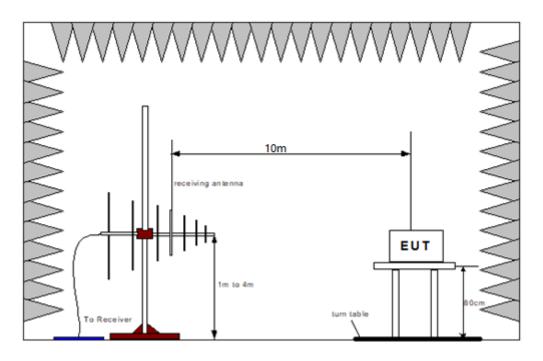

Model	: HMS-800W
Test Mode	: TM1
Remark	: DC-
Test Date	: 2023-03-21

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	AVG Level [dBµV]	AVG Limit [dBµV]	AVG Margin [dB]
1	0.159	54.60	83.52	28.92	33.90	73.52	39.62
1	0.200	48.07	81.63	33.56	34.34	71.63	37.29
1	0.420	54.60	75.45	20.85	36.69	65.45	28.76
1	0.848	56.73	74.00	17.27	36.67	64.00	27.33
1	1.406	54.66	74.00	19.34	35.30	64.00	28.70
1	3.138	50.34	74.00	23.66	33.33	64.00	30.67
1	7.647	44.53	74.00	29.47	28.86	64.00	35.14
1	9.636	40.46	74.00	33.54	28.24	64.00	35.76

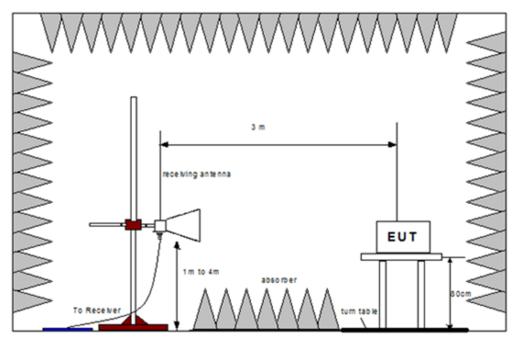
Model	: HMS-800W
Test Mode	: TM1
Remark	: DC+
Test Date	: 2023-03-21

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	AVG Level [dBµV]	AVG Limit [dBµV]	AVG Margin [dB]
1	0.159	71.18	83.52	12.34	49.14	73.52	24.37
1	0.317	62.77	77.80	15.03	39.77	67.80	28.03
1	0.420	70.34	75.45	5.11	53.04	65.45	12.41
1	0.848	71.73	74.00	2.27	52.51	64.00	11.49
1	1.374	67.78	74.00	6.22	47.71	64.00	16.29
1	1.572	65.65	74.00	8.35	44.42	64.00	19.58
1	3.030	61.98	74.00	12.02	44.12	64.00	19.88
1	7.863	58.06	74.00	15.94	42.39	64.00	21.61
1	9.524	56.11	74.00	17.89	40.25	64.00	23.75

2.2 Radiated Disturbance (30MHz to 6000MHz)


2.2.1 Test Method

The EUT was set up in a semi-anechoic chamber on a remotely controlled turntable and placed on a non-conductive

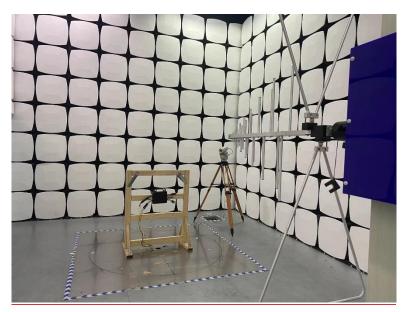

< floor 0.1 m above a reference ground plane>

< support 0.1 m above a reference ground plane>

A prescan of the EUT emissions profile was made while varying the antennae-to-EUT azimuth and antenna-to-EUT polarization using a peak detector; measurements were taken at a 10m distance. Using the prescan list of the highest emissions detected, their bearing and associated antenna polarization, the EUT was then formally measured using Quasi-Peak and Average detectors, as appropriate. The readings were maximized by adjusting the antenna height, polarization and turntable azimuth, in accordance with the specification.

2.2.2 Specification Limits

Radiated disturbance limits in the frequency range 30MHz to 1000MHz at a					
measuring distance of 3 m					
Frequency range MHz Quasi-peak limits dB(µV/m)					
30 to 230	40				
230 to 1000	47				


For EN 301 489-1, EN 301 489-17

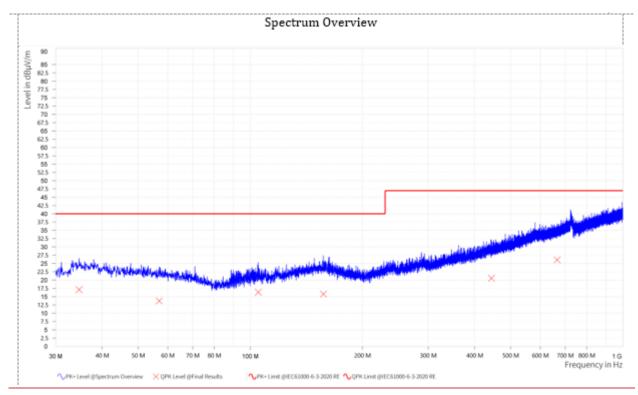
Radiated disturbance limits in the frequency range 1000MHz to 6000MHz at a						
measuring distance of 3 m						
Frequency range MHz	Average					
1000 to 3000 70		50				
3000 to 6000	74	54				

2.2.3 Test Setup

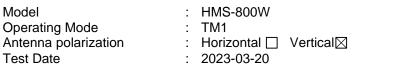
Test Setup (30MHz-1GHz)

Test Setup (1-6GHz)

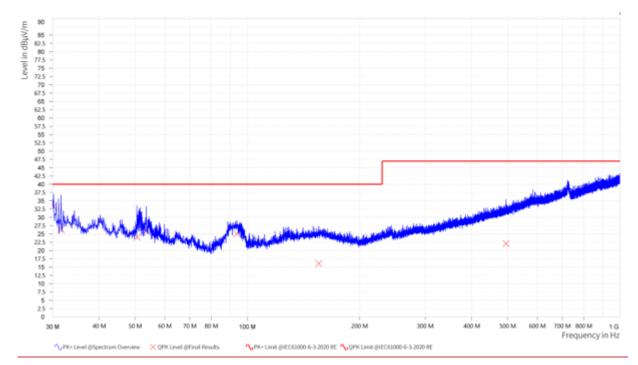
2.2.4 Test Location


This test was carried out in 3m anechoic chamber.

2.2.5 Test Results


Model	: HMS-800W
Operating Mode	: TM1
Antenna polarization	: Horizontal 🛛 Vertical 🗌
Test Date	: 2023-03-20

Radiated Electromagnetic Emissions 30MHz-1000MHz



No significant emission was detected within 6 dB to limit.

Radiated Electromagnetic Emissions 30MHz-1000MHz

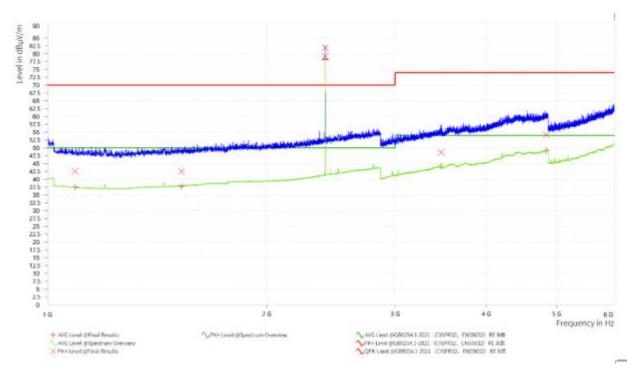


Frequency [MHz]	QPK Level [dBµV/m]		
30.180	33.28	40.00	6.72
31.620	26.34	40.00	13.66
50.520	23.93	40.00	16.07
53.520	25.94	40.00	14.06
93.720	25.04	40.00	14.96
155.520	16.09	40.00	23.91
495.000	22.08	47.00	24.92

Model	:	HMS-800W	
Operating Mode	:	TM1	
Antenna polarization	:	Horizontal 🖂	Vertical
Test Date	:	2023-03-20	

Radiated Electromagnetic Emissions 1000MHz-6000MHz

No significant emission was detected within 6 dB to limit


Remark: 2.4GHz is the operating frequency for wifi/bt module. It's excluded at this report.

Frequency (MHz)	Pol
2,403.500	Н
2,422.500	Н

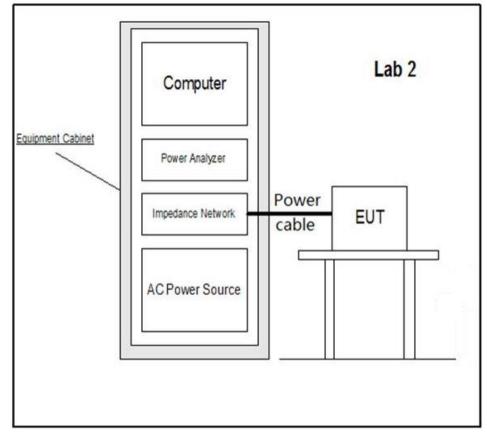
Model	: HMS-800W
Operating Mode	: TM1
Antenna polarization	: Horizontal 🗌 Vertical 🛛
Test Date	: 2023-03-20

Radiated Electromagnetic Emissions 1000MHz-6000MHz

No significant emission was detected within 6 dB to limit

Remark: 2.4GHz is the operating frequency for wifi/bt module. It's excluded at this report.

Frequency (MHz)	Pol
2,405.500	V
2,406.000	V



2.3 Harmonic current emission

2.3.1 Test Method

Harmonic current test should be conducted with the user's operation control or automatic programs set to the mode expected to produce the maximum total harmonic current under normal operating conditions.

Specific test conditions for the measurement of harmonic currents associated with some types of equipment are given in test equipment list.

2.3.2 Specification Limits

Limits for class A Equipment					
Harmonic order n Maximum permissible harmonic currer					
Odd harmonics					
3	2.30				
5	1.14				
7	0.77				
9	0.40				
11	0.33				
13	0.21				
15≤ n≤ 39 0.15(15/n)					
Even harmonics					

Limits for class A Equipment					
2	1.08				
4	0.43				
6	0.30				
8≤ n ≤40	0.23(8/n)				

2.3.3 Test Setup

N/A

2.3.4 Test Location

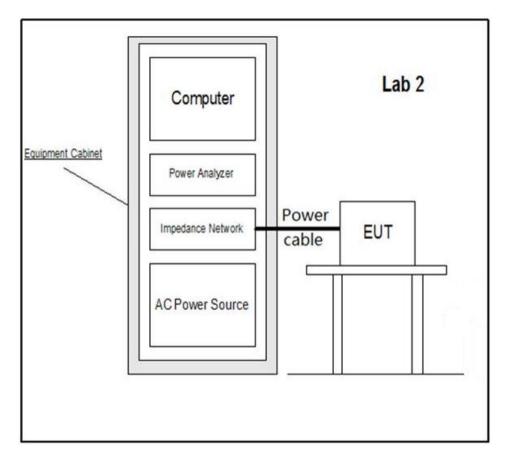
N/A

2.3.5 Test Results

Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test: N/A

Detailed results are shown below.


Test date: N/A N/A

2.4 Flicker

2.4.1 Test Method

Flicker test should be conducted with the user's operation controls or automatic programs set to the mode expected to produce the most unfavourable sequence of voltage change, using only those combinations of controls and programmes which are mentioned by the manufacturer in the instruction manual, or are otherwise likely to be used.

2.4.2 Specification Limits

The value of *P*st shall not be greater than 1.0 The value of *P*lt shall not be greater than 0.65 *T*max, the accumulated time value of d(t) with a deviation exceeding 3.3% during a single voltage change at the EUT terminals, shall not exceed 500ms The maximum relative steady-state voltage change, *d*c, shall not exceed 3.3% The maximum relative voltage change *d*max, shall not exceed 3.3%

- a) 4% without additional conditions
- b) 6% for equipment which is:
- Switched manually, or
- Switched automatically more frequently than twice per day, and also has either a delayed start, or manual restart, after a power supply interruption

- c) 7% for equipment which is:
- Attended whilst in use, or
- Switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart or manual restart, after a power supply interruption

2.4.3 Test Setup

N/A

2.4.4 Test Location

N/A

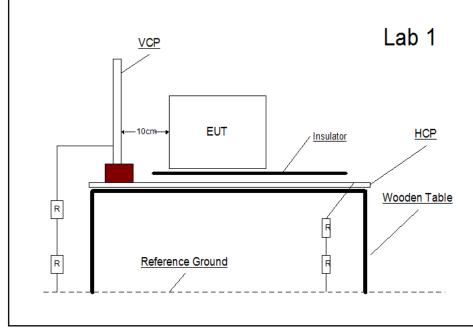
2.4.5 Test Results

Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test: N/A

Detailed results are shown below.

Test date: N/A


2.5 Electrostatic discharge immunity test

2.5.1 Test Method

The equipment under test including associated cabling was configured on but insulted from, using a 0.5mm isolator, a horizontal coupling plane fitted to the top of a 0.8 m non-conductive floor for Floor-Stand equipment; and on a 0.1 m insulated support for floor standing equipment; above a ground reference plane all within a test laboratory.

Using the air discharge method for non-metallic parts, contact discharge method for metallic parts with both vertical and horizontal couple plane discharge methods for the sides of the equipment under test, the required electrostatic discharge voltage levels in both voltage polarities were applied at the detailed pulse repartition rate.

During this testing any anomalies in the equipment under tests performance was recorded.

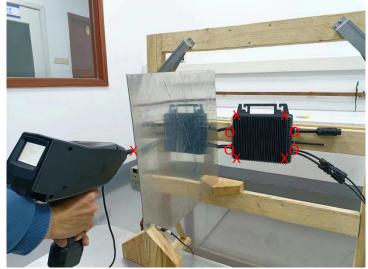
Floor-Stand equipment

HCP: Horizontal Coupling Plane 0.95 x 1.6 m

VCP: Vertical Coupling Plane 0.5 x 0.5 m

R. Ground: 2 x 2 m

R: 470 KΩ


2.5.2 Specification Limits

	Discharge	Level (kV)	Number of	Performance	
Discharge type	Positive	Negative	discharges per location	Criteria	
	FUSITIVE	negative	(each polarity)		
Air – Direct	8	8	10	В	
Contact – Direct	4	4	10	В	
Contact – Indirect	4	4	10	В	

2.5.3 Test Setup

X: Contact Discharge, O: Air Dischage

Test point

2.5.4 Test Location

This test was carried out in EMS Test Location.

2.5.5 Test Results

Test models: HMS-800W

Results for Configuration and Mode: TM1/TM2/TM3

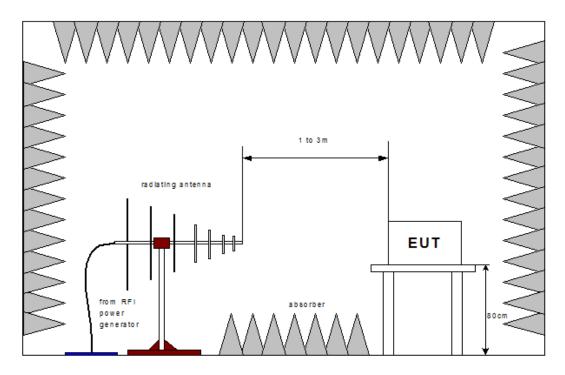
Performance assessment of the EUT made during this test: Pass (A)

Detailed results are shown below.

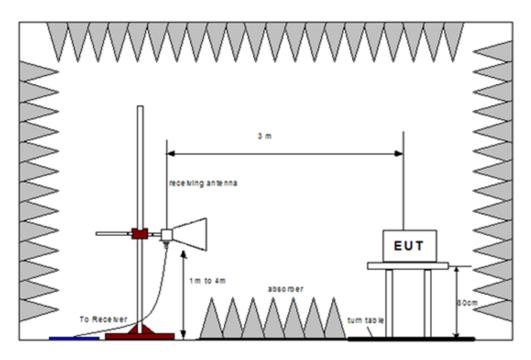
Test date: 2023-03-21

		Results: Met Performance Criteria									
Test Point	Discharge	2kV		4kV		6kV		8kV		15kV	
		+	-	+	-	+	-	+	-	+	-
НСР	Contact	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
VCP	Contact	N/A	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A
Each conductive location touchable by hand	Contact	N/A	N/A	A	A	N/A	N/A	N/A	N/A	N/A	N/A
Each nonconductive location touchable by hand	Air	N/A	N/A	N/A	N/A	N/A	N/A	A	A	N/A	N/A
N/A	Not Appliance										

Remark: No observable change.

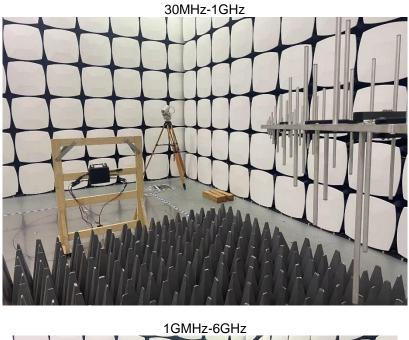

2.6 Enclosure Port - Radio-frequency electromagnetic field Amplitude modulated

2.6.1 Test Method


The equipment under test including associated cabling was configured, on a 0.1 m non-conductive floor for Floor-Stand equipment and on a 0.1 m insulated support for floor standing equipment; with a pre-calibrated semi anechoic chamber.

All four sides of the equipment under test were subjected to the required RF field strength, modulated as described, swept over the frequency range of test with the antenna positioned in both horizontal and vertical polarizations.

During this testing any anomalies in the equipment under tests performance was recorded.


2.6.2 Specification Limits

Required Test Levels						
Frequency Range (MHz)	Level (V/m)	Modulation	Step Size (%)	Dwell (s)	Performance Criteria	
80 to 1000	3	AM (80 %,1 kHz, sine wave)	1	1	A	
1000 to 6000	3	AM (80 %,1 kHz, sine wave)	1	1	A	
Supplementary information:						
Note 1. EUT powered at one of the Nominal input voltages and frequencies						

Page 31 of 57

2.6.3 Test Setup

2.6.4 Test Location

This test was carried out in EMS Test Location.

2.6.5 Test Results

Test models: HMS-800W

Results for Configuration and Mode: AC Powered, TM1/TM2/TM3

Performance assessment of the EUT made during this test: Pass.

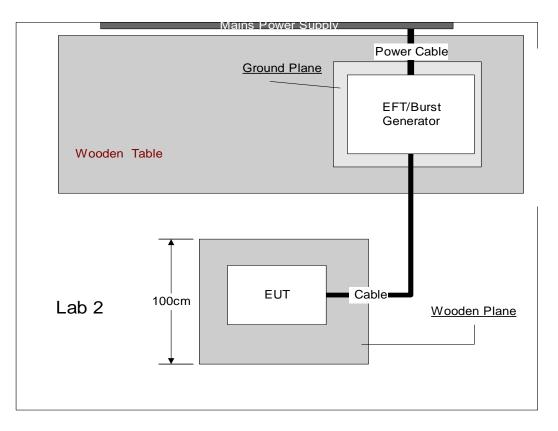
Detailed results are shown below.

Test date: 2023-03-21

Tabulated Results for RF Electromagnetic Field 80 - 1000 MHz					
Side of the equipment under test	Antenna polarization	Test Level	Dwell Time	Measuring distance	Results
All sides	Horizontal	3 V/m	1 s	3 m	А
All sides	Vertical	3 V/m	1 s	3 m	А

Tabulated Results for RF Electromagnetic Field 1000 - 6000 MHz					
Side of the equipment under test	Antenna polarization	Test Level	Dwell Time	Measuring distance	Results
All sides	Horizontal	3 V/m	1 s	3 m	А
All sides	Vertical	3 V/m	1 s	3 m	А

Remark: No observable change.


2.7 Electrical fast transient /burst immunity test

2.7.1 Test Method

The equipment under test including associated cabling was configured on but insulated from, using a 0.1 m isolator, a horizontal coupling plane fitted to the top of a 0.8 m non-conductive table for table-top equipment; and on a 0.1 m insulated support for floor standing equipment; above a ground reference plane all within a test laboratory.

Using a CDN for power ports, capacitive coupling clamp for signal and control ports and a 33nF coupling capacitor for earth ports, the required fast transient burst voltage levels in both voltage polarities were applied at the detailed pulse repartition rate and duration of test.

During this testing any anomalies in the equipment under tests performance was recorded.

2.7.2 Specification Limits

For EN IEC 61000-6-1&EN 62920

Required Test Levels Input and output a.c. power ports					
Line Under Test	Level (kV)	Repetition Rate (kHz)	Test Duration	Coupling Method	Performance Criteria
Input and output a.c. power ports	± 1	5 kHz	2 min per polarity	Direct	В
For extra low voltage a constrained output a constraint this testing is only applicable to					

For extra low voltage a.c. ports and output a.c. ports, this testing is only applicable to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

R					
Line Under Test	Level (kV)	Repetition Rate (kHz)	Test Duration	Coupling Method	Performance Criteria
DC Power port	± 0.5	5 kHz	2 min per polarity	Clamp	В

Not applicable to input ports intended for connection to a battery or a rechargeable battery which shall be removed or disconnected from the equipment for recharging. Equipment with a DC power input port intended for use with a dedicated AC–DC power adaptor shall be tested on the AC power input of the AC–DC power adaptor specified by the manufacturer (see the test level of Table 4). Where no adaptor is specified, the test shall be done on the DC power port using the test level of Table 4. Where an adaptor is specified, the test is applicable to DC power input ports only when intended to be connected permanently to cables longer than 3 m.

The test may be performed at one or at both repetition frequencies. The use of 5 kHz repetition frequency is traditional; however, 100 kHz is closer to reality.


Requi						
Line Under	Level (kV)	Repetition	Test	Coupling	Performance	
Test		Rate (kHz)	Duration	Method	Criteria	
Signal and control lines	± 0.5	5 kHz	2 min per polarity	Clamp	В	
Applicable only to ports interfacing with cables whose total length can exceed 3m according to the manufacturer's function specification.						

For EN 301 489-1 V2.2.3 & EN 301 489-17 V3.2.4

Test Results of Electrical Fast Transient Bursts				
Ports	Measuring condition Couple mode	Performance criterion		
AC Power Port	Level:±1.0kV, Tr/Th: 5/50ns, 5kHz Interval: 120 seconds	В		
DC Power Port	Level:±0.5kV, Tr/Th: 5/50ns, 5kHz Interval: 120 seconds	В		
Signal Port	Level:±0.5kV, Tr/Th: 5/50ns, 5kHz Interval: 120 seconds	В		
xDSL	Level:±0.5kV, Tr/Th: 5/50ns, 100kHz Interval: 120 seconds	В		

2.7.3 Test Setup

2.7.4 Test Location

This test was carried out in EMS Test Location.

2.7.5 Test Results

Test models: HMS-800W

Results for Configuration and Mode: AC powered, TM1, TM5

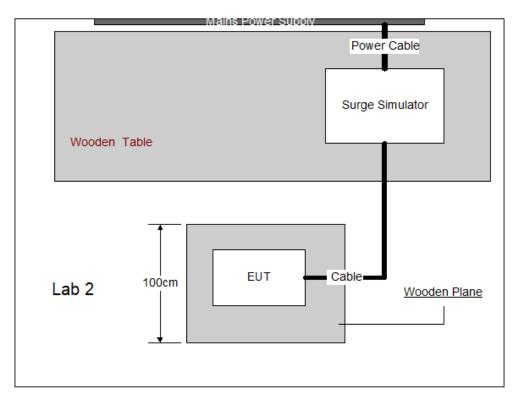
Performance assessment of the EUT made during this test: Pass

Detailed results are shown below.

Test date: 2023-03-21

					Ch		
Tabulated Results for Fast Transient Burst Immunity							
Line under test	Test Level (kV)	Repetition Rate	Test Duration	Coupling Method	Result		
AC Power Line	± 1.0 kV	5 kHz	2 min	Direct	А		
DC Power Line	± 0.5 kV	5 kHz	2 min	Clamp	А		
Signal Line	± 0.5 kV	5 kHz	2 min	Clamp	N/A		

Remark: No observable change.


2.8 Surge immunity test

2.8.1 Test Method

The equipment under test including associated cabling was configured, on a 0.8 m non-conductive table for table-top equipment and on a 0.1 m insulated support for floor standing equipment above a ground reference plane all within a test laboratory.

Using CDNs for power ports and appropriate coupling methods for applicable signal and control ports, the required number of surges was applied for each surge voltage level using both positive and negative surge voltage polarities. Surges were applied at the power line frequency phase angles and repartition rates detailed.

During this testing any anomalies in the equipment under tests performance was recorded.

2.8.2 Specification Limits

For EN IE 61000-6-2&62920

Ir	Performance					
Line Under Test	Characteristics	Test Levels	Criteria			
	Wave-shape data	1.2/50 µs				
line to line with	2Ω impedance	± 1.0 kV	В			
line to earth with	12 Ω impedance	±2.0 kV				
Note in addition to the specified test level, all lower levels as detailed in IEC 61000-4-5						
should also be satisfi	ed.					

Por	Performance					
Line Under Test	Characteristics	Characteristics Test Levels				
	Wave-shape data	1.2/50 µs	В			
line to earth with	42Ω impedance	± 1.0 kV	Б			
Applicable only to ports interfacing with long distance lines(>30m).						
Where the normal functioning cannot be achieved because of the impact of the						

coupling/decoupling network (CDN) on the EUT, the test shall be done with the reduced functionality. A rationale shall be given in the test report for doing so. After the test and the removal of the CDN, the normal function shall not be affected.

For EN 301 489-1 V2.2.3 & EN 301 489-17 V3.2.4

Characteristics	Test Levels	Performance Criteria
Wave- shape data Test levels line to line	1.2/50 μs ± 1.0 kV	В
line to ground	±2.0 kV	В

2.8.3 Test Setup

2.8.4 Test Location

This test was carried out in EMS Test Location.

2.8.5 Test Results

Test models: HMS-800W

Results for Configuration and Mode: AC Powered, TM1/TM2/TM3

Performance assessment of the EUT made during this test: Pass

Detailed results are shown below.

Test date: 2023-03-21

Tabulated Results for Surge Immunity (AC Power Ports)								
Line Name	Coupling	Level	Phase Angle	No of Pulses	Repetition Rate	Result		
AC Power Cord	Live to Neutral	±1.0kV	0, 90, 180,270 deg	5	60 sec	А		
AC Power Cord	Live to Earth	±2.0kV	0, 90, 180,270 deg	5	60 sec	A		
AC Power Cord	Neutral to Earth	±2.0kV	0, 90, 180,270 deg	5	60 sec	А		

Tabulated Results for Surge Immunity (Signal and Control Ports)						
Line Name	Coupling	Level	Phase Angle	No of Pulses	Repetition Rate	Result
Signal Cord	Line to Earth	±1.0kV	0, 90, 180,270 deg	5	60 sec	N/A

Remark: No observable change.

2.9 Immunity to conducted disturbances, induced by radio-frequency fields

2.9.1 Test Method

The equipment under test was configured, on but insulated from, using a 0.1 m isolator, a horizontal coupling plane fitted to the top of a 0.1 m non-conductive table for table-top equipment, above a ground reference plane all within a test laboratory.

All associated cabling was configured, on but insulated from, using a 50 mm isolator, the same horizontal coupling plane as the equipment under test.

Using CDNs, EM Clamps or current clamps as appropriate, the power ports and applicable signal and control ports were subjected to the required, pre calibrated RF injected signal strength, modulated as described, swept over the frequency range of test. During this testing any anomalies in the equipment under tests performance was recorded.

Mains Power Supply A A Signal Cable D **RF- Generator** Β 30cm Lab 1 EUT С A : Power Cable **B**: Ground Plane C: Wooden Plane D: EM Clamp

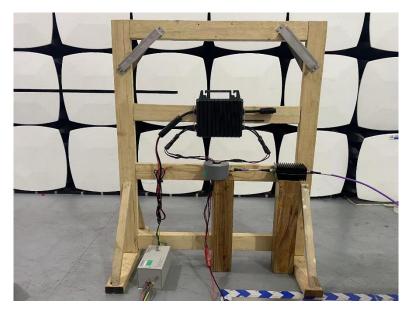
Page 41 of 57

2.9.2 Specification Limits

For EN IEC 61000-6-1&62920

	Input a	nd output a	.c. power ports					
Line Under Test	Frequency Range (MHz)	Level (V)	Modulation	Step Size (%)	Dwell (s)	Performance Criteria		
Input and output a.c. power ports	0.15 to 80	3	AM (80 %,1 kHz, sine wave)	1	3	A		
ports interfac	For extra low voltage a.c ports and output a.c. ports, this testing is only applicable to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.							

	_							
	Required Test Levels							
	Input a	nd output D	.C. power ports					
Line Under	Frequency			Step	Dwell			
Test	Range	Level (V)	Modulation	Size		Performance		
rest	(MHz)			(%)	(s)	Criteria		
Input and			AM (80 %,1					
output d.c.	0.15 to 80	3	kHz, sine	1	3	A		
power ports			wave)					
For extra low	For extra low voltage a.c ports and output a.c. ports, this testing is only applicable to							
ports interfacing with cables whose total length may exceed 3 m according to the								
manufacture	r's functional	specificatio	า.					


Line Under Test	Frequency Range (MHz)	Level (V)	Modulation	Step Size (%)	Dwell (s)	Performance Criteria
Signal and control port	0.15 to 80	3	AM (80 %,1 kHz, sine wave)	1	3	A
Applicable only to ports interfacing with cables whose total length may exceed 3m according to the manufacturer's function specification.						

For EN 301 489-1 V2.2.3 & EN 301 489-17 V3.2.4

Re						
Line Under Test	Frequency Range (MHz)	Level (V)	Modulation	Step Size (%)	Dwell (s)	Performance Criteria
Signal and control lines	0.15 to 80	3	AM (80 %,1 kHz, sine wave)	1	1	А

2.9.3 Test Setup

2.9.4 Test Location

This test was carried out in EMS Test Location.

2.9.5 Test Results

Test models: HMS-800W

Results for Configuration and Mode: AC Powered, TM1/TM2/TM3

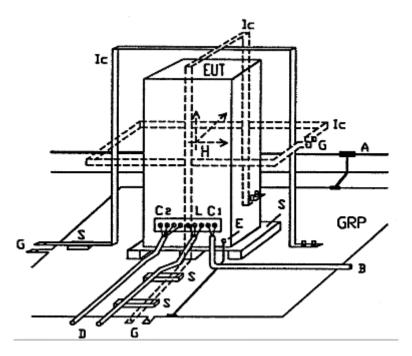
Performance assessment of the EUT made during this test: Pass

Detailed results are shown below.

Test date: 2023-03-21

Tabulated Results for Injected current							
Line and sensitive frequency under test	Test Level	Step	Dwell Time	Coupling Method	Modulation	Result	
AC Power line	3V	1%	3s	CDN	1kHz, 80%	А	
DC Power line	3V	1%	3s	Clamp	1kHz, 80%	А	
Signal line	3V	1%	3s	Clamp	1kHz, 80%	N/A	

Remark: No observable change.

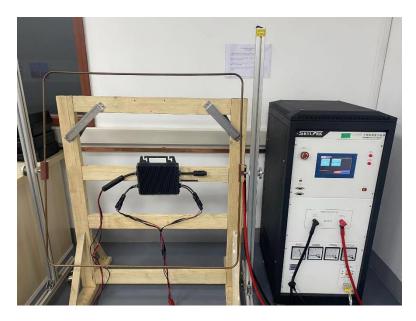

2.10 Enclosure Port - Power-frequency magnetic field

2.10.1 Test Method

The equipment under test including associated cabling was configured on a non-conductive support at the volumetric center of the immunity coils. A pre calibrated input level was then applied to magnetic immunity coils at the detailed frequency and level for the required test period.

The EUT was retested with the magnetic field applied in all 3 orthogonal planes of the EUT.

During this testing any anomalies in the equipment under tests performance was recorded.



2.10.2 Specification Limits

	Performance						
Application	Level (A/m)	Duration	Criteria				
Continuous Field	30	dependent on EUT operating cycle	A				
Supplementary information:							
Note 1. EUT pow	Note 1. EUT powered at one of the Nominal input voltages and frequencies						

2.10.3 Test Setup

2.10.4 Test Location

This test was carried out in EMS Test Location.

2.10.5 Test Results

Test models: HMS-800W

Results for Configuration and Mode: AC Powered, TM1/TM2/TM3

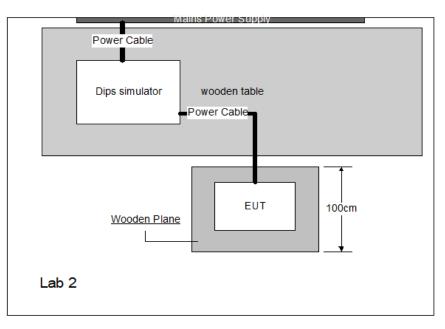
Performance assessment of the EUT made during this test: Pass

Detailed results are shown below.

Test date: 2023-03-21

Tabulated Results for Power Frequency Magnetic Immunity					
Orientation	Operating Frequency	Test Frequency	Test Level	Duration	Result
X axis	50Hz	50Hz	30 A/m	1 min	А
Y axis	50Hz	50Hz	30 A/m	1 min	A
Z axis	50Hz	50Hz	30 A/m	1 min	А

Remark: No observable change.



2.11 Voltage dips, short interruptions and voltage variations immunity tests

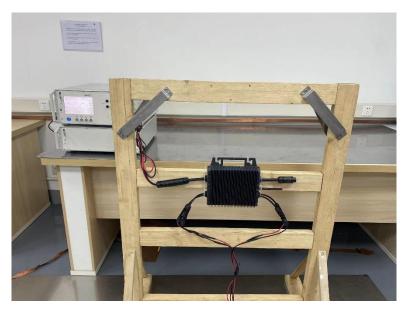
2.11.1 Test Method

The equipment under test including associated cabling was configured, on a 0.8 m non-conductive table for table-top equipment and on a 0.1 m insulated support for floor standing equipment above a ground reference plane all within a test laboratory.

Using a programmable power supply the equipment under test was subjected to the detailed supply voltage dips and interruptions. The required supply phase synchronization and test repetition rate, detailed, was controlled by the programmable power supply. During this testing any anomalies in the equipment under tests performance was recorded.

2.11.2 Specification Limits

For EN IEC 61000-6-2&62920


		Voltage Dips					
Voltage Dips in % UT	Test level in % UT	Dura	Duration				
		50Hz	60Hz	Criteria			
100	0	0.5 cycle	0.5 cycle	В			
100	0	1 cycle	1 cycle	В			
30	70	25 cycles	30 cycles	С			
100	0	250 cycles	300 cycles	С			
UT is the rated	UT is the rated voltage of the Equipment Under Test						

For EN 301 489-1 V2.2.3 & EN 301 489-17 V3.2.4

	Test Results of Voltage Dips and Short Interruption					
Ports	Ports Measuring condition					
	Voltage dip: 0 % residual voltage for 0,5 cycle					
	Voltage dip: 0 % residual voltage for 1 cycle					
	Voltage dip: 70 % residual voltage for 25 cycles (at 50 Hz), 30 cycles (at 60 Hz)	В				
	Voltage interruption: 0 % residual voltage for 250 cycles (at 50 Hz), 300 cycles (at 60 Hz)	B, C				
	Remark: Performance criterion B: EUT stop work during test but can recover by itself after test. For EN 301 489-1, C is acceptable for wireless connection.					

2.11.3 Test Setup

2.11.4 Test Location

This test was carried out in EMS Test Location.

2.11.5 Test Results

Test models: HMS-800W

Results for Configuration and Mode: AC Powered, TM1/TM2/TM3

Performance assessment of the EUT made during this test: Pass

Detailed results are shown below.

Test date: 2023-03-21

For EN IEC 61000-6-1&62920

Tabulated Results for Voltage Dip and Short Interruption						
Line under test	Vnom	Operating Frequency	Test Level	Duration	Result	
Power line	230 V~	50 Hz	0% of Vnom	½ cycle	А	
Power line	230 V~	50 Hz	0% of Vnom	1 cycle	В	
Power line	230 V~	50Hz	70% of Vnom	25 cycles	В	
Power line	230 V~	50 Hz	0% of Vnom	250 cycles	В	

For EN 301 489-1 V2.2.3 & EN 301 489-17 V3.2.4

Tabulated Results for Voltage Dip and Short Interruption						
Line under test	Vnom	Operating Frequency	Test Level	Duration	Results	
Power line	230 V~	50Hz	0% of Vnom	½ cycle	A	
Power line	230 V~	50Hz	0% of Vnom	1 cycle	В	
Power line	230 V~	50Hz	70% of Vnom	25 cycles	В	
Power line	230 V~	50Hz	0% of Vnom	250 cycles	В	

Remark: EUT shut down when short interruption test was applied, and it could restart by itself.

3 Test Equipment Information

3.1 General Test Equipment Used

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE
Receiver	R&S	ESR7	TW/C-003	2023.09.25
LISN	Schwarzbeck	NSLK8127	TW/C-013	2023.09.25
LISN	Schwarzbeck	ENV4200	TW/C-040	2023.03.17
LISN	Schwarzbeck	PVDC8301	TW/C-063	2023.12.19

Radiated Emission Test (SAC-3 area)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE
Receiver	Rohde & Schwarz	ESR7	TW/C-003	2023.09.25
Antenna	Schwarzbeck	VULB9168	TW/C-004	2023.12.04
Antenna	Schwarzbeck	BBHA9120D	TW/C-005	2023.12.04

Electrostatic Discharge Test(ESD area)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE
ESD Generator	Haefely	ONYX30	TW/C-025	2023.09.25

Radiated Immunity Test (SAC-3 area)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE
Signal Generator	Rohde&Schwarz	SMB100A	TW/C-017	2023.09.25
Amplifer	RFLIGHT	NTWPA- 0081010005 00E	TW/C-015	2023.09.25
Antenna	RFLIGHT	NTWPA- 1060100E	TW/C-016	2023.09.25
Amplifer	Schwarzbeck	STLP9128D	TW/C-019	2024.03.17
Horn Antenna	Schwarzbeck	BBHA9120D	TW/C-005	2023.12.04
Power Meter	Rohde&Schwarz	NRP6A	TW/C-018-1	2023.09.25
Power Meter	Rohde&Schwarz	NRP6A	TW/C-018-2	2023.09.25
Field Probe	Narda	EP601	TW/C-037	2023.09.25

Electrical Fast Transients Test(EMS area)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE		
Surge & EFT Generator	EMTEST	AXOS5	TW/C-026-1	2023.09.25		
Capacitive coupling Clamp	EMTEST	IP4B	TW/C-026-3	2023.09.25		
3-phase EFT CDN	EMTEST	CDN-4100	TW/C-042	2023.03.17		

Surges Test(EMS area)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE
Surge & EFT Generator	Haefely	AXOS5	TW/C-026-1	2023.09.25
3-phase Surge CDN	3ctest	SGN-20	TW/C-041	2023.03.17

Conducted Immunity Test(EMS area)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE
Signal Generator	Rohde&Schwarz	SMB100A	TW/C-017	2023.09.25
Amplifer	RFLIGHT	NTWPA- 4k04200E	TW/C-021	2023.09.25
Attenuator	Ruiming microwave	100W6dB	TW/C-035	2023.09.25
CDN	CYBERTEK	EM5070A	TW/C-033	2023.09.25
Power meter	FCC	F-120-6A	TW/C-022	2023.09.25
Power meter	Rohde&Schwarz	NRP6A	TW/C-018-1	2023.09.25
Signal Generator	Rohde&Schwarz	NRP6A	TW/C-018-2	2023.09.25

Variation of power frequency Test (EMS area)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE
3-Phase Voltage Dips Simulator	Skylarks	CSS-30P3	TW/C-045	2024.03.22
Surge & EFT Generator	Haefely	AXOS5	TW/C-026-1	2023.09.25

Power-frequency magnetic field Test(EMS area)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	CAL. DUE DATE
PFMF Generator	Skylarks	PFM-1000	TW/C-038	2023.09.25

4 Measurement Uncertainty

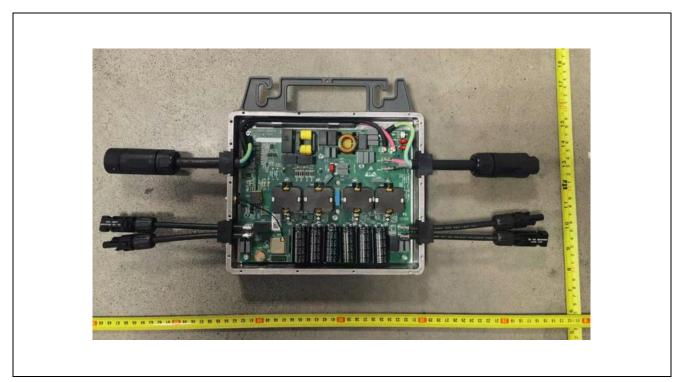
For a 95% confidence level, the measurement uncertainties for defined systems are:

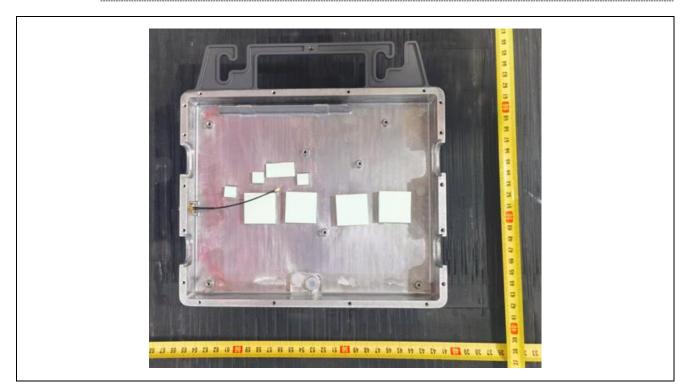
System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Conducted Emission 150kHz-30MHz	3.8dB			
Uncertainty for Radiated Emission in 3m chamber 30MHz- 1000MHz	Horizontal: 2.8dB; Vertical: 2.8dB			
Uncertainty for Radiated Emission in 10m chamber 1000MHz-6000MHz	Horizontal: 2.4dB; Vertical: 2.4dB			

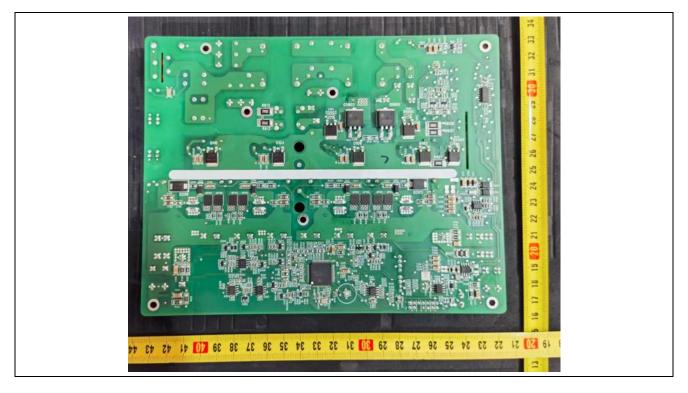
Remark:

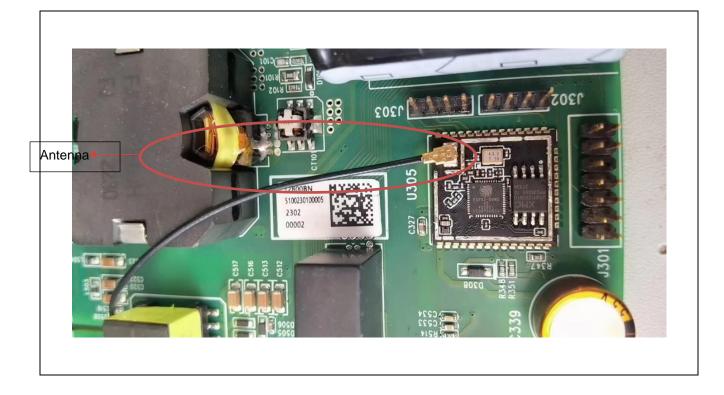
Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.


5 Photographs


Details of:





--END--